jason 075d766964 first | пре 3 година | |
---|---|---|
.. | ||
mem | пре 3 година | |
sftpfs | пре 3 година | |
.travis.yml | пре 3 година | |
LICENSE.txt | пре 3 година | |
README.md | пре 3 година | |
afero.go | пре 3 година | |
afero_test.go | пре 3 година | |
appveyor.yml | пре 3 година | |
basepath.go | пре 3 година | |
basepath_test.go | пре 3 година | |
cacheOnReadFs.go | пре 3 година | |
composite_test.go | пре 3 година | |
const_bsds.go | пре 3 година | |
const_win_unix.go | пре 3 година | |
copyOnWriteFs.go | пре 3 година | |
copyOnWriteFs_test.go | пре 3 година | |
go.mod | пре 3 година | |
httpFs.go | пре 3 година | |
ioutil.go | пре 3 година | |
ioutil_test.go | пре 3 година | |
lstater.go | пре 3 година | |
lstater_test.go | пре 3 година | |
match.go | пре 3 година | |
match_test.go | пре 3 година | |
memmap.go | пре 3 година | |
memmap_test.go | пре 3 година | |
os.go | пре 3 година | |
path.go | пре 3 година | |
path_test.go | пре 3 година | |
readonlyfs.go | пре 3 година | |
regexpfs.go | пре 3 година | |
ro_regexp_test.go | пре 3 година | |
unionFile.go | пре 3 година | |
util.go | пре 3 година | |
util_test.go | пре 3 година |
A FileSystem Abstraction System for Go
Afero is an filesystem framework providing a simple, uniform and universal API interacting with any filesystem, as an abstraction layer providing interfaces, types and methods. Afero has an exceptionally clean interface and simple design without needless constructors or initialization methods.
Afero is also a library providing a base set of interoperable backend filesystems that make it easy to work with afero while retaining all the power and benefit of the os and ioutil packages.
Afero provides significant improvements over using the os package alone, most notably the ability to create mock and testing filesystems without relying on the disk.
It is suitable for use in a any situation where you would consider using the OS package as it provides an additional abstraction that makes it easy to use a memory backed file system during testing. It also adds support for the http filesystem for full interoperability.
Afero is easy to use and easier to adopt.
A few different ways you could use Afero:
First use go get to install the latest version of the library.
$ go get github.com/spf13/afero
Next include Afero in your application.
import "github.com/spf13/afero"
First define a package variable and set it to a pointer to a filesystem.
var AppFs = afero.NewMemMapFs()
or
var AppFs = afero.NewOsFs()
It is important to note that if you repeat the composite literal you will be using a completely new and isolated filesystem. In the case of OsFs it will still use the same underlying filesystem but will reduce the ability to drop in other filesystems as desired.
Throughout your application use any function and method like you normally would.
So if my application before had:
os.Open('/tmp/foo')
We would replace it with:
AppFs.Open('/tmp/foo')
AppFs
being the variable we defined above.
File System Methods Available:
Chmod(name string, mode os.FileMode) : error
Chtimes(name string, atime time.Time, mtime time.Time) : error
Create(name string) : File, error
Mkdir(name string, perm os.FileMode) : error
MkdirAll(path string, perm os.FileMode) : error
Name() : string
Open(name string) : File, error
OpenFile(name string, flag int, perm os.FileMode) : File, error
Remove(name string) : error
RemoveAll(path string) : error
Rename(oldname, newname string) : error
Stat(name string) : os.FileInfo, error
File Interfaces and Methods Available:
io.Closer
io.Reader
io.ReaderAt
io.Seeker
io.Writer
io.WriterAt
Name() : string
Readdir(count int) : []os.FileInfo, error
Readdirnames(n int) : []string, error
Stat() : os.FileInfo, error
Sync() : error
Truncate(size int64) : error
WriteString(s string) : ret int, err error
In some applications it may make sense to define a new package that simply exports the file system variable for easy access from anywhere.
Afero provides a set of functions to make it easier to use the underlying file systems. These functions have been primarily ported from io & ioutil with some developed for Hugo.
The afero utilities support all afero compatible backends.
The list of utilities includes:
DirExists(path string) (bool, error)
Exists(path string) (bool, error)
FileContainsBytes(filename string, subslice []byte) (bool, error)
GetTempDir(subPath string) string
IsDir(path string) (bool, error)
IsEmpty(path string) (bool, error)
ReadDir(dirname string) ([]os.FileInfo, error)
ReadFile(filename string) ([]byte, error)
SafeWriteReader(path string, r io.Reader) (err error)
TempDir(dir, prefix string) (name string, err error)
TempFile(dir, prefix string) (f File, err error)
Walk(root string, walkFn filepath.WalkFunc) error
WriteFile(filename string, data []byte, perm os.FileMode) error
WriteReader(path string, r io.Reader) (err error)
For a complete list see Afero's GoDoc
They are available under two different approaches to use. You can either call
them directly where the first parameter of each function will be the file
system, or you can declare a new Afero
, a custom type used to bind these
functions as methods to a given filesystem.
fs := new(afero.MemMapFs)
f, err := afero.TempFile(fs,"", "ioutil-test")
fs := afero.NewMemMapFs()
afs := &afero.Afero{Fs: fs}
f, err := afs.TempFile("", "ioutil-test")
There is a large benefit to using a mock filesystem for testing. It has a completely blank state every time it is initialized and can be easily reproducible regardless of OS. You could create files to your heart’s content and the file access would be fast while also saving you from all the annoying issues with deleting temporary files, Windows file locking, etc. The MemMapFs backend is perfect for testing.
One way to accomplish this is to define a variable as mentioned above. In your application this will be set to afero.NewOsFs() during testing you can set it to afero.NewMemMapFs().
It wouldn't be uncommon to have each test initialize a blank slate memory
backend. To do this I would define my appFS = afero.NewOsFs()
somewhere
appropriate in my application code. This approach ensures that Tests are order
independent, with no test relying on the state left by an earlier test.
Then in my tests I would initialize a new MemMapFs for each test:
func TestExist(t *testing.T) {
appFS := afero.NewMemMapFs()
// create test files and directories
appFS.MkdirAll("src/a", 0755)
afero.WriteFile(appFS, "src/a/b", []byte("file b"), 0644)
afero.WriteFile(appFS, "src/c", []byte("file c"), 0644)
name := "src/c"
_, err := appFS.Stat(name)
if os.IsNotExist(err) {
t.Errorf("file \"%s\" does not exist.\n", name)
}
}
The first is simply a wrapper around the native OS calls. This makes it very easy to use as all of the calls are the same as the existing OS calls. It also makes it trivial to have your code use the OS during operation and a mock filesystem during testing or as needed.
appfs := afero.NewOsFs()
appfs.MkdirAll("src/a", 0755))
Afero also provides a fully atomic memory backed filesystem perfect for use in mocking and to speed up unnecessary disk io when persistence isn’t necessary. It is fully concurrent and will work within go routines safely.
mm := afero.NewMemMapFs()
mm.MkdirAll("src/a", 0755))
As part of MemMapFs, Afero also provides an atomic, fully concurrent memory backed file implementation. This can be used in other memory backed file systems with ease. Plans are to add a radix tree memory stored file system using InMemoryFile.
Afero has experimental support for secure file transfer protocol (sftp). Which can be used to perform file operations over a encrypted channel.
The BasePathFs restricts all operations to a given path within an Fs. The given file name to the operations on this Fs will be prepended with the base path before calling the source Fs.
bp := afero.NewBasePathFs(afero.NewOsFs(), "/base/path")
A thin wrapper around the source Fs providing a read only view.
fs := afero.NewReadOnlyFs(afero.NewOsFs())
_, err := fs.Create("/file.txt")
// err = syscall.EPERM
A filtered view on file names, any file NOT matching the passed regexp will be treated as non-existing. Files not matching the regexp provided will not be created. Directories are not filtered.
fs := afero.NewRegexpFs(afero.NewMemMapFs(), regexp.MustCompile(`\.txt$`))
_, err := fs.Create("/file.html")
// err = syscall.ENOENT
Afero provides an http compatible backend which can wrap any of the existing backends.
The Http package requires a slightly specific version of Open which returns an http.File type.
Afero provides an httpFs file system which satisfies this requirement. Any Afero FileSystem can be used as an httpFs.
httpFs := afero.NewHttpFs(<ExistingFS>)
fileserver := http.FileServer(httpFs.Dir(<PATH>)))
http.Handle("/", fileserver)
Afero provides the ability have two filesystems (or more) act as a single file system.
The CacheOnReadFs will lazily make copies of any accessed files from the base layer into the overlay. Subsequent reads will be pulled from the overlay directly permitting the request is within the cache duration of when it was created in the overlay.
If the base filesystem is writeable, any changes to files will be
done first to the base, then to the overlay layer. Write calls to open file
handles like Write()
or Truncate()
to the overlay first.
To writing files to the overlay only, you can use the overlay Fs directly (not via the union Fs).
Cache files in the layer for the given time.Duration, a cache duration of 0 means "forever" meaning the file will not be re-requested from the base ever.
A read-only base will make the overlay also read-only but still copy files from the base to the overlay when they're not present (or outdated) in the caching layer.
base := afero.NewOsFs()
layer := afero.NewMemMapFs()
ufs := afero.NewCacheOnReadFs(base, layer, 100 * time.Second)
The CopyOnWriteFs is a read only base file system with a potentially writeable layer on top.
Read operations will first look in the overlay and if not found there, will serve the file from the base.
Changes to the file system will only be made in the overlay.
Any attempt to modify a file found only in the base will copy the file to the overlay layer before modification (including opening a file with a writable handle).
Removing and Renaming files present only in the base layer is not currently permitted. If a file is present in the base layer and the overlay, only the overlay will be removed/renamed.
base := afero.NewOsFs()
roBase := afero.NewReadOnlyFs(base)
ufs := afero.NewCopyOnWriteFs(roBase, afero.NewMemMapFs())
fh, _ = ufs.Create("/home/test/file2.txt")
fh.WriteString("This is a test")
fh.Close()
In this example all write operations will only occur in memory (MemMapFs) leaving the base filesystem (OsFs) untouched.
The following is a short list of possible backends we hope someone will implement:
Afero comes from the latin roots Ad-Facere.
"Ad" is a prefix meaning "to".
"Facere" is a form of the root "faciō" making "make or do".
The literal meaning of afero is "to make" or "to do" which seems very fitting for a library that allows one to make files and directories and do things with them.
The English word that shares the same roots as Afero is "affair". Affair shares the same concept but as a noun it means "something that is made or done" or "an object of a particular type".
It's also nice that unlike some of my other libraries (hugo, cobra, viper) it Googles very well.
git checkout -b my-new-feature
)git commit -am 'Add some feature'
)git push origin my-new-feature
)Names in no particular order:
Afero is released under the Apache 2.0 license. See LICENSE.txt