12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184 |
- // Copyright (c) 2015 Klaus Post, released under MIT License. See LICENSE file.
- // Package cpuid provides information about the CPU running the current program.
- //
- // CPU features are detected on startup, and kept for fast access through the life of the application.
- // Currently x86 / x64 (AMD64) is supported.
- //
- // You can access the CPU information by accessing the shared CPU variable of the cpuid library.
- //
- // Package home: https://github.com/klauspost/cpuid
- package cpuid
- import "strings"
- // Vendor is a representation of a CPU vendor.
- type Vendor int
- const (
- Other Vendor = iota
- Intel
- AMD
- VIA
- Transmeta
- NSC
- KVM // Kernel-based Virtual Machine
- MSVM // Microsoft Hyper-V or Windows Virtual PC
- VMware
- XenHVM
- Bhyve
- Hygon
- )
- const (
- CMOV = 1 << iota // i686 CMOV
- NX // NX (No-Execute) bit
- AMD3DNOW // AMD 3DNOW
- AMD3DNOWEXT // AMD 3DNowExt
- MMX // standard MMX
- MMXEXT // SSE integer functions or AMD MMX ext
- SSE // SSE functions
- SSE2 // P4 SSE functions
- SSE3 // Prescott SSE3 functions
- SSSE3 // Conroe SSSE3 functions
- SSE4 // Penryn SSE4.1 functions
- SSE4A // AMD Barcelona microarchitecture SSE4a instructions
- SSE42 // Nehalem SSE4.2 functions
- AVX // AVX functions
- AVX2 // AVX2 functions
- FMA3 // Intel FMA 3
- FMA4 // Bulldozer FMA4 functions
- XOP // Bulldozer XOP functions
- F16C // Half-precision floating-point conversion
- BMI1 // Bit Manipulation Instruction Set 1
- BMI2 // Bit Manipulation Instruction Set 2
- TBM // AMD Trailing Bit Manipulation
- LZCNT // LZCNT instruction
- POPCNT // POPCNT instruction
- AESNI // Advanced Encryption Standard New Instructions
- CLMUL // Carry-less Multiplication
- HTT // Hyperthreading (enabled)
- HLE // Hardware Lock Elision
- RTM // Restricted Transactional Memory
- RDRAND // RDRAND instruction is available
- RDSEED // RDSEED instruction is available
- ADX // Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
- SHA // Intel SHA Extensions
- AVX512F // AVX-512 Foundation
- AVX512DQ // AVX-512 Doubleword and Quadword Instructions
- AVX512IFMA // AVX-512 Integer Fused Multiply-Add Instructions
- AVX512PF // AVX-512 Prefetch Instructions
- AVX512ER // AVX-512 Exponential and Reciprocal Instructions
- AVX512CD // AVX-512 Conflict Detection Instructions
- AVX512BW // AVX-512 Byte and Word Instructions
- AVX512VL // AVX-512 Vector Length Extensions
- AVX512VBMI // AVX-512 Vector Bit Manipulation Instructions
- AVX512VBMI2 // AVX-512 Vector Bit Manipulation Instructions, Version 2
- AVX512VNNI // AVX-512 Vector Neural Network Instructions
- AVX512VPOPCNTDQ // AVX-512 Vector Population Count Doubleword and Quadword
- GFNI // Galois Field New Instructions
- VAES // Vector AES
- AVX512BITALG // AVX-512 Bit Algorithms
- VPCLMULQDQ // Carry-Less Multiplication Quadword
- AVX512BF16 // AVX-512 BFLOAT16 Instructions
- AVX512VP2INTERSECT // AVX-512 Intersect for D/Q
- MPX // Intel MPX (Memory Protection Extensions)
- ERMS // Enhanced REP MOVSB/STOSB
- RDTSCP // RDTSCP Instruction
- CX16 // CMPXCHG16B Instruction
- SGX // Software Guard Extensions
- SGXLC // Software Guard Extensions Launch Control
- IBPB // Indirect Branch Restricted Speculation (IBRS) and Indirect Branch Predictor Barrier (IBPB)
- STIBP // Single Thread Indirect Branch Predictors
- VMX // Virtual Machine Extensions
- // Performance indicators
- SSE2SLOW // SSE2 is supported, but usually not faster
- SSE3SLOW // SSE3 is supported, but usually not faster
- ATOM // Atom processor, some SSSE3 instructions are slower
- )
- var flagNames = map[Flags]string{
- CMOV: "CMOV", // i686 CMOV
- NX: "NX", // NX (No-Execute) bit
- AMD3DNOW: "AMD3DNOW", // AMD 3DNOW
- AMD3DNOWEXT: "AMD3DNOWEXT", // AMD 3DNowExt
- MMX: "MMX", // Standard MMX
- MMXEXT: "MMXEXT", // SSE integer functions or AMD MMX ext
- SSE: "SSE", // SSE functions
- SSE2: "SSE2", // P4 SSE2 functions
- SSE3: "SSE3", // Prescott SSE3 functions
- SSSE3: "SSSE3", // Conroe SSSE3 functions
- SSE4: "SSE4.1", // Penryn SSE4.1 functions
- SSE4A: "SSE4A", // AMD Barcelona microarchitecture SSE4a instructions
- SSE42: "SSE4.2", // Nehalem SSE4.2 functions
- AVX: "AVX", // AVX functions
- AVX2: "AVX2", // AVX functions
- FMA3: "FMA3", // Intel FMA 3
- FMA4: "FMA4", // Bulldozer FMA4 functions
- XOP: "XOP", // Bulldozer XOP functions
- F16C: "F16C", // Half-precision floating-point conversion
- BMI1: "BMI1", // Bit Manipulation Instruction Set 1
- BMI2: "BMI2", // Bit Manipulation Instruction Set 2
- TBM: "TBM", // AMD Trailing Bit Manipulation
- LZCNT: "LZCNT", // LZCNT instruction
- POPCNT: "POPCNT", // POPCNT instruction
- AESNI: "AESNI", // Advanced Encryption Standard New Instructions
- CLMUL: "CLMUL", // Carry-less Multiplication
- HTT: "HTT", // Hyperthreading (enabled)
- HLE: "HLE", // Hardware Lock Elision
- RTM: "RTM", // Restricted Transactional Memory
- RDRAND: "RDRAND", // RDRAND instruction is available
- RDSEED: "RDSEED", // RDSEED instruction is available
- ADX: "ADX", // Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
- SHA: "SHA", // Intel SHA Extensions
- AVX512F: "AVX512F", // AVX-512 Foundation
- AVX512DQ: "AVX512DQ", // AVX-512 Doubleword and Quadword Instructions
- AVX512IFMA: "AVX512IFMA", // AVX-512 Integer Fused Multiply-Add Instructions
- AVX512PF: "AVX512PF", // AVX-512 Prefetch Instructions
- AVX512ER: "AVX512ER", // AVX-512 Exponential and Reciprocal Instructions
- AVX512CD: "AVX512CD", // AVX-512 Conflict Detection Instructions
- AVX512BW: "AVX512BW", // AVX-512 Byte and Word Instructions
- AVX512VL: "AVX512VL", // AVX-512 Vector Length Extensions
- AVX512VBMI: "AVX512VBMI", // AVX-512 Vector Bit Manipulation Instructions
- AVX512VBMI2: "AVX512VBMI2", // AVX-512 Vector Bit Manipulation Instructions, Version 2
- AVX512VNNI: "AVX512VNNI", // AVX-512 Vector Neural Network Instructions
- AVX512VPOPCNTDQ: "AVX512VPOPCNTDQ", // AVX-512 Vector Population Count Doubleword and Quadword
- GFNI: "GFNI", // Galois Field New Instructions
- VAES: "VAES", // Vector AES
- AVX512BITALG: "AVX512BITALG", // AVX-512 Bit Algorithms
- VPCLMULQDQ: "VPCLMULQDQ", // Carry-Less Multiplication Quadword
- AVX512BF16: "AVX512BF16", // AVX-512 BFLOAT16 Instruction
- AVX512VP2INTERSECT: "AVX512VP2INTERSECT", // AVX-512 Intersect for D/Q
- MPX: "MPX", // Intel MPX (Memory Protection Extensions)
- ERMS: "ERMS", // Enhanced REP MOVSB/STOSB
- RDTSCP: "RDTSCP", // RDTSCP Instruction
- CX16: "CX16", // CMPXCHG16B Instruction
- SGX: "SGX", // Software Guard Extensions
- SGXLC: "SGXLC", // Software Guard Extensions Launch Control
- IBPB: "IBPB", // Indirect Branch Restricted Speculation and Indirect Branch Predictor Barrier
- STIBP: "STIBP", // Single Thread Indirect Branch Predictors
- VMX: "VMX", // Virtual Machine Extensions
- // Performance indicators
- SSE2SLOW: "SSE2SLOW", // SSE2 supported, but usually not faster
- SSE3SLOW: "SSE3SLOW", // SSE3 supported, but usually not faster
- ATOM: "ATOM", // Atom processor, some SSSE3 instructions are slower
- }
- // CPUInfo contains information about the detected system CPU.
- type CPUInfo struct {
- BrandName string // Brand name reported by the CPU
- VendorID Vendor // Comparable CPU vendor ID
- Features Flags // Features of the CPU
- PhysicalCores int // Number of physical processor cores in your CPU. Will be 0 if undetectable.
- ThreadsPerCore int // Number of threads per physical core. Will be 1 if undetectable.
- LogicalCores int // Number of physical cores times threads that can run on each core through the use of hyperthreading. Will be 0 if undetectable.
- Family int // CPU family number
- Model int // CPU model number
- CacheLine int // Cache line size in bytes. Will be 0 if undetectable.
- Cache struct {
- L1I int // L1 Instruction Cache (per core or shared). Will be -1 if undetected
- L1D int // L1 Data Cache (per core or shared). Will be -1 if undetected
- L2 int // L2 Cache (per core or shared). Will be -1 if undetected
- L3 int // L3 Instruction Cache (per core or shared). Will be -1 if undetected
- }
- SGX SGXSupport
- maxFunc uint32
- maxExFunc uint32
- }
- var cpuid func(op uint32) (eax, ebx, ecx, edx uint32)
- var cpuidex func(op, op2 uint32) (eax, ebx, ecx, edx uint32)
- var xgetbv func(index uint32) (eax, edx uint32)
- var rdtscpAsm func() (eax, ebx, ecx, edx uint32)
- // CPU contains information about the CPU as detected on startup,
- // or when Detect last was called.
- //
- // Use this as the primary entry point to you data,
- // this way queries are
- var CPU CPUInfo
- func init() {
- initCPU()
- Detect()
- }
- // Detect will re-detect current CPU info.
- // This will replace the content of the exported CPU variable.
- //
- // Unless you expect the CPU to change while you are running your program
- // you should not need to call this function.
- // If you call this, you must ensure that no other goroutine is accessing the
- // exported CPU variable.
- func Detect() {
- CPU.maxFunc = maxFunctionID()
- CPU.maxExFunc = maxExtendedFunction()
- CPU.BrandName = brandName()
- CPU.CacheLine = cacheLine()
- CPU.Family, CPU.Model = familyModel()
- CPU.Features = support()
- CPU.SGX = hasSGX(CPU.Features&SGX != 0, CPU.Features&SGXLC != 0)
- CPU.ThreadsPerCore = threadsPerCore()
- CPU.LogicalCores = logicalCores()
- CPU.PhysicalCores = physicalCores()
- CPU.VendorID = vendorID()
- CPU.cacheSize()
- }
- // Generated here: http://play.golang.org/p/BxFH2Gdc0G
- // Cmov indicates support of CMOV instructions
- func (c CPUInfo) Cmov() bool {
- return c.Features&CMOV != 0
- }
- // Amd3dnow indicates support of AMD 3DNOW! instructions
- func (c CPUInfo) Amd3dnow() bool {
- return c.Features&AMD3DNOW != 0
- }
- // Amd3dnowExt indicates support of AMD 3DNOW! Extended instructions
- func (c CPUInfo) Amd3dnowExt() bool {
- return c.Features&AMD3DNOWEXT != 0
- }
- // VMX indicates support of VMX
- func (c CPUInfo) VMX() bool {
- return c.Features&VMX != 0
- }
- // MMX indicates support of MMX instructions
- func (c CPUInfo) MMX() bool {
- return c.Features&MMX != 0
- }
- // MMXExt indicates support of MMXEXT instructions
- // (SSE integer functions or AMD MMX ext)
- func (c CPUInfo) MMXExt() bool {
- return c.Features&MMXEXT != 0
- }
- // SSE indicates support of SSE instructions
- func (c CPUInfo) SSE() bool {
- return c.Features&SSE != 0
- }
- // SSE2 indicates support of SSE 2 instructions
- func (c CPUInfo) SSE2() bool {
- return c.Features&SSE2 != 0
- }
- // SSE3 indicates support of SSE 3 instructions
- func (c CPUInfo) SSE3() bool {
- return c.Features&SSE3 != 0
- }
- // SSSE3 indicates support of SSSE 3 instructions
- func (c CPUInfo) SSSE3() bool {
- return c.Features&SSSE3 != 0
- }
- // SSE4 indicates support of SSE 4 (also called SSE 4.1) instructions
- func (c CPUInfo) SSE4() bool {
- return c.Features&SSE4 != 0
- }
- // SSE42 indicates support of SSE4.2 instructions
- func (c CPUInfo) SSE42() bool {
- return c.Features&SSE42 != 0
- }
- // AVX indicates support of AVX instructions
- // and operating system support of AVX instructions
- func (c CPUInfo) AVX() bool {
- return c.Features&AVX != 0
- }
- // AVX2 indicates support of AVX2 instructions
- func (c CPUInfo) AVX2() bool {
- return c.Features&AVX2 != 0
- }
- // FMA3 indicates support of FMA3 instructions
- func (c CPUInfo) FMA3() bool {
- return c.Features&FMA3 != 0
- }
- // FMA4 indicates support of FMA4 instructions
- func (c CPUInfo) FMA4() bool {
- return c.Features&FMA4 != 0
- }
- // XOP indicates support of XOP instructions
- func (c CPUInfo) XOP() bool {
- return c.Features&XOP != 0
- }
- // F16C indicates support of F16C instructions
- func (c CPUInfo) F16C() bool {
- return c.Features&F16C != 0
- }
- // BMI1 indicates support of BMI1 instructions
- func (c CPUInfo) BMI1() bool {
- return c.Features&BMI1 != 0
- }
- // BMI2 indicates support of BMI2 instructions
- func (c CPUInfo) BMI2() bool {
- return c.Features&BMI2 != 0
- }
- // TBM indicates support of TBM instructions
- // (AMD Trailing Bit Manipulation)
- func (c CPUInfo) TBM() bool {
- return c.Features&TBM != 0
- }
- // Lzcnt indicates support of LZCNT instruction
- func (c CPUInfo) Lzcnt() bool {
- return c.Features&LZCNT != 0
- }
- // Popcnt indicates support of POPCNT instruction
- func (c CPUInfo) Popcnt() bool {
- return c.Features&POPCNT != 0
- }
- // HTT indicates the processor has Hyperthreading enabled
- func (c CPUInfo) HTT() bool {
- return c.Features&HTT != 0
- }
- // SSE2Slow indicates that SSE2 may be slow on this processor
- func (c CPUInfo) SSE2Slow() bool {
- return c.Features&SSE2SLOW != 0
- }
- // SSE3Slow indicates that SSE3 may be slow on this processor
- func (c CPUInfo) SSE3Slow() bool {
- return c.Features&SSE3SLOW != 0
- }
- // AesNi indicates support of AES-NI instructions
- // (Advanced Encryption Standard New Instructions)
- func (c CPUInfo) AesNi() bool {
- return c.Features&AESNI != 0
- }
- // Clmul indicates support of CLMUL instructions
- // (Carry-less Multiplication)
- func (c CPUInfo) Clmul() bool {
- return c.Features&CLMUL != 0
- }
- // NX indicates support of NX (No-Execute) bit
- func (c CPUInfo) NX() bool {
- return c.Features&NX != 0
- }
- // SSE4A indicates support of AMD Barcelona microarchitecture SSE4a instructions
- func (c CPUInfo) SSE4A() bool {
- return c.Features&SSE4A != 0
- }
- // HLE indicates support of Hardware Lock Elision
- func (c CPUInfo) HLE() bool {
- return c.Features&HLE != 0
- }
- // RTM indicates support of Restricted Transactional Memory
- func (c CPUInfo) RTM() bool {
- return c.Features&RTM != 0
- }
- // Rdrand indicates support of RDRAND instruction is available
- func (c CPUInfo) Rdrand() bool {
- return c.Features&RDRAND != 0
- }
- // Rdseed indicates support of RDSEED instruction is available
- func (c CPUInfo) Rdseed() bool {
- return c.Features&RDSEED != 0
- }
- // ADX indicates support of Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
- func (c CPUInfo) ADX() bool {
- return c.Features&ADX != 0
- }
- // SHA indicates support of Intel SHA Extensions
- func (c CPUInfo) SHA() bool {
- return c.Features&SHA != 0
- }
- // AVX512F indicates support of AVX-512 Foundation
- func (c CPUInfo) AVX512F() bool {
- return c.Features&AVX512F != 0
- }
- // AVX512DQ indicates support of AVX-512 Doubleword and Quadword Instructions
- func (c CPUInfo) AVX512DQ() bool {
- return c.Features&AVX512DQ != 0
- }
- // AVX512IFMA indicates support of AVX-512 Integer Fused Multiply-Add Instructions
- func (c CPUInfo) AVX512IFMA() bool {
- return c.Features&AVX512IFMA != 0
- }
- // AVX512PF indicates support of AVX-512 Prefetch Instructions
- func (c CPUInfo) AVX512PF() bool {
- return c.Features&AVX512PF != 0
- }
- // AVX512ER indicates support of AVX-512 Exponential and Reciprocal Instructions
- func (c CPUInfo) AVX512ER() bool {
- return c.Features&AVX512ER != 0
- }
- // AVX512CD indicates support of AVX-512 Conflict Detection Instructions
- func (c CPUInfo) AVX512CD() bool {
- return c.Features&AVX512CD != 0
- }
- // AVX512BW indicates support of AVX-512 Byte and Word Instructions
- func (c CPUInfo) AVX512BW() bool {
- return c.Features&AVX512BW != 0
- }
- // AVX512VL indicates support of AVX-512 Vector Length Extensions
- func (c CPUInfo) AVX512VL() bool {
- return c.Features&AVX512VL != 0
- }
- // AVX512VBMI indicates support of AVX-512 Vector Bit Manipulation Instructions
- func (c CPUInfo) AVX512VBMI() bool {
- return c.Features&AVX512VBMI != 0
- }
- // AVX512VBMI2 indicates support of AVX-512 Vector Bit Manipulation Instructions, Version 2
- func (c CPUInfo) AVX512VBMI2() bool {
- return c.Features&AVX512VBMI2 != 0
- }
- // AVX512VNNI indicates support of AVX-512 Vector Neural Network Instructions
- func (c CPUInfo) AVX512VNNI() bool {
- return c.Features&AVX512VNNI != 0
- }
- // AVX512VPOPCNTDQ indicates support of AVX-512 Vector Population Count Doubleword and Quadword
- func (c CPUInfo) AVX512VPOPCNTDQ() bool {
- return c.Features&AVX512VPOPCNTDQ != 0
- }
- // GFNI indicates support of Galois Field New Instructions
- func (c CPUInfo) GFNI() bool {
- return c.Features&GFNI != 0
- }
- // VAES indicates support of Vector AES
- func (c CPUInfo) VAES() bool {
- return c.Features&VAES != 0
- }
- // AVX512BITALG indicates support of AVX-512 Bit Algorithms
- func (c CPUInfo) AVX512BITALG() bool {
- return c.Features&AVX512BITALG != 0
- }
- // VPCLMULQDQ indicates support of Carry-Less Multiplication Quadword
- func (c CPUInfo) VPCLMULQDQ() bool {
- return c.Features&VPCLMULQDQ != 0
- }
- // AVX512BF16 indicates support of
- func (c CPUInfo) AVX512BF16() bool {
- return c.Features&AVX512BF16 != 0
- }
- // AVX512VP2INTERSECT indicates support of
- func (c CPUInfo) AVX512VP2INTERSECT() bool {
- return c.Features&AVX512VP2INTERSECT != 0
- }
- // MPX indicates support of Intel MPX (Memory Protection Extensions)
- func (c CPUInfo) MPX() bool {
- return c.Features&MPX != 0
- }
- // ERMS indicates support of Enhanced REP MOVSB/STOSB
- func (c CPUInfo) ERMS() bool {
- return c.Features&ERMS != 0
- }
- // RDTSCP Instruction is available.
- func (c CPUInfo) RDTSCP() bool {
- return c.Features&RDTSCP != 0
- }
- // CX16 indicates if CMPXCHG16B instruction is available.
- func (c CPUInfo) CX16() bool {
- return c.Features&CX16 != 0
- }
- // TSX is split into HLE (Hardware Lock Elision) and RTM (Restricted Transactional Memory) detection.
- // So TSX simply checks that.
- func (c CPUInfo) TSX() bool {
- return c.Features&(HLE|RTM) == HLE|RTM
- }
- // Atom indicates an Atom processor
- func (c CPUInfo) Atom() bool {
- return c.Features&ATOM != 0
- }
- // Intel returns true if vendor is recognized as Intel
- func (c CPUInfo) Intel() bool {
- return c.VendorID == Intel
- }
- // AMD returns true if vendor is recognized as AMD
- func (c CPUInfo) AMD() bool {
- return c.VendorID == AMD
- }
- // Hygon returns true if vendor is recognized as Hygon
- func (c CPUInfo) Hygon() bool {
- return c.VendorID == Hygon
- }
- // Transmeta returns true if vendor is recognized as Transmeta
- func (c CPUInfo) Transmeta() bool {
- return c.VendorID == Transmeta
- }
- // NSC returns true if vendor is recognized as National Semiconductor
- func (c CPUInfo) NSC() bool {
- return c.VendorID == NSC
- }
- // VIA returns true if vendor is recognized as VIA
- func (c CPUInfo) VIA() bool {
- return c.VendorID == VIA
- }
- // RTCounter returns the 64-bit time-stamp counter
- // Uses the RDTSCP instruction. The value 0 is returned
- // if the CPU does not support the instruction.
- func (c CPUInfo) RTCounter() uint64 {
- if !c.RDTSCP() {
- return 0
- }
- a, _, _, d := rdtscpAsm()
- return uint64(a) | (uint64(d) << 32)
- }
- // Ia32TscAux returns the IA32_TSC_AUX part of the RDTSCP.
- // This variable is OS dependent, but on Linux contains information
- // about the current cpu/core the code is running on.
- // If the RDTSCP instruction isn't supported on the CPU, the value 0 is returned.
- func (c CPUInfo) Ia32TscAux() uint32 {
- if !c.RDTSCP() {
- return 0
- }
- _, _, ecx, _ := rdtscpAsm()
- return ecx
- }
- // LogicalCPU will return the Logical CPU the code is currently executing on.
- // This is likely to change when the OS re-schedules the running thread
- // to another CPU.
- // If the current core cannot be detected, -1 will be returned.
- func (c CPUInfo) LogicalCPU() int {
- if c.maxFunc < 1 {
- return -1
- }
- _, ebx, _, _ := cpuid(1)
- return int(ebx >> 24)
- }
- // VM Will return true if the cpu id indicates we are in
- // a virtual machine. This is only a hint, and will very likely
- // have many false negatives.
- func (c CPUInfo) VM() bool {
- switch c.VendorID {
- case MSVM, KVM, VMware, XenHVM, Bhyve:
- return true
- }
- return false
- }
- // Flags contains detected cpu features and caracteristics
- type Flags uint64
- // String returns a string representation of the detected
- // CPU features.
- func (f Flags) String() string {
- return strings.Join(f.Strings(), ",")
- }
- // Strings returns and array of the detected features.
- func (f Flags) Strings() []string {
- s := support()
- r := make([]string, 0, 20)
- for i := uint(0); i < 64; i++ {
- key := Flags(1 << i)
- val := flagNames[key]
- if s&key != 0 {
- r = append(r, val)
- }
- }
- return r
- }
- func maxExtendedFunction() uint32 {
- eax, _, _, _ := cpuid(0x80000000)
- return eax
- }
- func maxFunctionID() uint32 {
- a, _, _, _ := cpuid(0)
- return a
- }
- func brandName() string {
- if maxExtendedFunction() >= 0x80000004 {
- v := make([]uint32, 0, 48)
- for i := uint32(0); i < 3; i++ {
- a, b, c, d := cpuid(0x80000002 + i)
- v = append(v, a, b, c, d)
- }
- return strings.Trim(string(valAsString(v...)), " ")
- }
- return "unknown"
- }
- func threadsPerCore() int {
- mfi := maxFunctionID()
- if mfi < 0x4 || vendorID() != Intel {
- return 1
- }
- if mfi < 0xb {
- _, b, _, d := cpuid(1)
- if (d & (1 << 28)) != 0 {
- // v will contain logical core count
- v := (b >> 16) & 255
- if v > 1 {
- a4, _, _, _ := cpuid(4)
- // physical cores
- v2 := (a4 >> 26) + 1
- if v2 > 0 {
- return int(v) / int(v2)
- }
- }
- }
- return 1
- }
- _, b, _, _ := cpuidex(0xb, 0)
- if b&0xffff == 0 {
- return 1
- }
- return int(b & 0xffff)
- }
- func logicalCores() int {
- mfi := maxFunctionID()
- switch vendorID() {
- case Intel:
- // Use this on old Intel processors
- if mfi < 0xb {
- if mfi < 1 {
- return 0
- }
- // CPUID.1:EBX[23:16] represents the maximum number of addressable IDs (initial APIC ID)
- // that can be assigned to logical processors in a physical package.
- // The value may not be the same as the number of logical processors that are present in the hardware of a physical package.
- _, ebx, _, _ := cpuid(1)
- logical := (ebx >> 16) & 0xff
- return int(logical)
- }
- _, b, _, _ := cpuidex(0xb, 1)
- return int(b & 0xffff)
- case AMD, Hygon:
- _, b, _, _ := cpuid(1)
- return int((b >> 16) & 0xff)
- default:
- return 0
- }
- }
- func familyModel() (int, int) {
- if maxFunctionID() < 0x1 {
- return 0, 0
- }
- eax, _, _, _ := cpuid(1)
- family := ((eax >> 8) & 0xf) + ((eax >> 20) & 0xff)
- model := ((eax >> 4) & 0xf) + ((eax >> 12) & 0xf0)
- return int(family), int(model)
- }
- func physicalCores() int {
- switch vendorID() {
- case Intel:
- return logicalCores() / threadsPerCore()
- case AMD, Hygon:
- if maxExtendedFunction() >= 0x80000008 {
- _, _, c, _ := cpuid(0x80000008)
- return int(c&0xff) + 1
- }
- }
- return 0
- }
- // Except from http://en.wikipedia.org/wiki/CPUID#EAX.3D0:_Get_vendor_ID
- var vendorMapping = map[string]Vendor{
- "AMDisbetter!": AMD,
- "AuthenticAMD": AMD,
- "CentaurHauls": VIA,
- "GenuineIntel": Intel,
- "TransmetaCPU": Transmeta,
- "GenuineTMx86": Transmeta,
- "Geode by NSC": NSC,
- "VIA VIA VIA ": VIA,
- "KVMKVMKVMKVM": KVM,
- "Microsoft Hv": MSVM,
- "VMwareVMware": VMware,
- "XenVMMXenVMM": XenHVM,
- "bhyve bhyve ": Bhyve,
- "HygonGenuine": Hygon,
- }
- func vendorID() Vendor {
- _, b, c, d := cpuid(0)
- v := valAsString(b, d, c)
- vend, ok := vendorMapping[string(v)]
- if !ok {
- return Other
- }
- return vend
- }
- func cacheLine() int {
- if maxFunctionID() < 0x1 {
- return 0
- }
- _, ebx, _, _ := cpuid(1)
- cache := (ebx & 0xff00) >> 5 // cflush size
- if cache == 0 && maxExtendedFunction() >= 0x80000006 {
- _, _, ecx, _ := cpuid(0x80000006)
- cache = ecx & 0xff // cacheline size
- }
- // TODO: Read from Cache and TLB Information
- return int(cache)
- }
- func (c *CPUInfo) cacheSize() {
- c.Cache.L1D = -1
- c.Cache.L1I = -1
- c.Cache.L2 = -1
- c.Cache.L3 = -1
- vendor := vendorID()
- switch vendor {
- case Intel:
- if maxFunctionID() < 4 {
- return
- }
- for i := uint32(0); ; i++ {
- eax, ebx, ecx, _ := cpuidex(4, i)
- cacheType := eax & 15
- if cacheType == 0 {
- break
- }
- cacheLevel := (eax >> 5) & 7
- coherency := int(ebx&0xfff) + 1
- partitions := int((ebx>>12)&0x3ff) + 1
- associativity := int((ebx>>22)&0x3ff) + 1
- sets := int(ecx) + 1
- size := associativity * partitions * coherency * sets
- switch cacheLevel {
- case 1:
- if cacheType == 1 {
- // 1 = Data Cache
- c.Cache.L1D = size
- } else if cacheType == 2 {
- // 2 = Instruction Cache
- c.Cache.L1I = size
- } else {
- if c.Cache.L1D < 0 {
- c.Cache.L1I = size
- }
- if c.Cache.L1I < 0 {
- c.Cache.L1I = size
- }
- }
- case 2:
- c.Cache.L2 = size
- case 3:
- c.Cache.L3 = size
- }
- }
- case AMD, Hygon:
- // Untested.
- if maxExtendedFunction() < 0x80000005 {
- return
- }
- _, _, ecx, edx := cpuid(0x80000005)
- c.Cache.L1D = int(((ecx >> 24) & 0xFF) * 1024)
- c.Cache.L1I = int(((edx >> 24) & 0xFF) * 1024)
- if maxExtendedFunction() < 0x80000006 {
- return
- }
- _, _, ecx, _ = cpuid(0x80000006)
- c.Cache.L2 = int(((ecx >> 16) & 0xFFFF) * 1024)
- }
- return
- }
- type SGXEPCSection struct {
- BaseAddress uint64
- EPCSize uint64
- }
- type SGXSupport struct {
- Available bool
- LaunchControl bool
- SGX1Supported bool
- SGX2Supported bool
- MaxEnclaveSizeNot64 int64
- MaxEnclaveSize64 int64
- EPCSections []SGXEPCSection
- }
- func hasSGX(available, lc bool) (rval SGXSupport) {
- rval.Available = available
- if !available {
- return
- }
- rval.LaunchControl = lc
- a, _, _, d := cpuidex(0x12, 0)
- rval.SGX1Supported = a&0x01 != 0
- rval.SGX2Supported = a&0x02 != 0
- rval.MaxEnclaveSizeNot64 = 1 << (d & 0xFF) // pow 2
- rval.MaxEnclaveSize64 = 1 << ((d >> 8) & 0xFF) // pow 2
- rval.EPCSections = make([]SGXEPCSection, 0)
- for subleaf := uint32(2); subleaf < 2+8; subleaf++ {
- eax, ebx, ecx, edx := cpuidex(0x12, subleaf)
- leafType := eax & 0xf
- if leafType == 0 {
- // Invalid subleaf, stop iterating
- break
- } else if leafType == 1 {
- // EPC Section subleaf
- baseAddress := uint64(eax&0xfffff000) + (uint64(ebx&0x000fffff) << 32)
- size := uint64(ecx&0xfffff000) + (uint64(edx&0x000fffff) << 32)
- section := SGXEPCSection{BaseAddress: baseAddress, EPCSize: size}
- rval.EPCSections = append(rval.EPCSections, section)
- }
- }
- return
- }
- func support() Flags {
- mfi := maxFunctionID()
- vend := vendorID()
- if mfi < 0x1 {
- return 0
- }
- rval := uint64(0)
- _, _, c, d := cpuid(1)
- if (d & (1 << 15)) != 0 {
- rval |= CMOV
- }
- if (d & (1 << 23)) != 0 {
- rval |= MMX
- }
- if (d & (1 << 25)) != 0 {
- rval |= MMXEXT
- }
- if (d & (1 << 25)) != 0 {
- rval |= SSE
- }
- if (d & (1 << 26)) != 0 {
- rval |= SSE2
- }
- if (c & 1) != 0 {
- rval |= SSE3
- }
- if (c & (1 << 5)) != 0 {
- rval |= VMX
- }
- if (c & 0x00000200) != 0 {
- rval |= SSSE3
- }
- if (c & 0x00080000) != 0 {
- rval |= SSE4
- }
- if (c & 0x00100000) != 0 {
- rval |= SSE42
- }
- if (c & (1 << 25)) != 0 {
- rval |= AESNI
- }
- if (c & (1 << 1)) != 0 {
- rval |= CLMUL
- }
- if c&(1<<23) != 0 {
- rval |= POPCNT
- }
- if c&(1<<30) != 0 {
- rval |= RDRAND
- }
- if c&(1<<29) != 0 {
- rval |= F16C
- }
- if c&(1<<13) != 0 {
- rval |= CX16
- }
- if vend == Intel && (d&(1<<28)) != 0 && mfi >= 4 {
- if threadsPerCore() > 1 {
- rval |= HTT
- }
- }
- // Check XGETBV, OXSAVE and AVX bits
- if c&(1<<26) != 0 && c&(1<<27) != 0 && c&(1<<28) != 0 {
- // Check for OS support
- eax, _ := xgetbv(0)
- if (eax & 0x6) == 0x6 {
- rval |= AVX
- if (c & 0x00001000) != 0 {
- rval |= FMA3
- }
- }
- }
- // Check AVX2, AVX2 requires OS support, but BMI1/2 don't.
- if mfi >= 7 {
- _, ebx, ecx, edx := cpuidex(7, 0)
- eax1, _, _, _ := cpuidex(7, 1)
- if (rval&AVX) != 0 && (ebx&0x00000020) != 0 {
- rval |= AVX2
- }
- if (ebx & 0x00000008) != 0 {
- rval |= BMI1
- if (ebx & 0x00000100) != 0 {
- rval |= BMI2
- }
- }
- if ebx&(1<<2) != 0 {
- rval |= SGX
- }
- if ebx&(1<<4) != 0 {
- rval |= HLE
- }
- if ebx&(1<<9) != 0 {
- rval |= ERMS
- }
- if ebx&(1<<11) != 0 {
- rval |= RTM
- }
- if ebx&(1<<14) != 0 {
- rval |= MPX
- }
- if ebx&(1<<18) != 0 {
- rval |= RDSEED
- }
- if ebx&(1<<19) != 0 {
- rval |= ADX
- }
- if ebx&(1<<29) != 0 {
- rval |= SHA
- }
- if edx&(1<<26) != 0 {
- rval |= IBPB
- }
- if ecx&(1<<30) != 0 {
- rval |= SGXLC
- }
- if edx&(1<<27) != 0 {
- rval |= STIBP
- }
- // Only detect AVX-512 features if XGETBV is supported
- if c&((1<<26)|(1<<27)) == (1<<26)|(1<<27) {
- // Check for OS support
- eax, _ := xgetbv(0)
- // Verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and
- // ZMM16-ZMM31 state are enabled by OS)
- /// and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by OS).
- if (eax>>5)&7 == 7 && (eax>>1)&3 == 3 {
- if ebx&(1<<16) != 0 {
- rval |= AVX512F
- }
- if ebx&(1<<17) != 0 {
- rval |= AVX512DQ
- }
- if ebx&(1<<21) != 0 {
- rval |= AVX512IFMA
- }
- if ebx&(1<<26) != 0 {
- rval |= AVX512PF
- }
- if ebx&(1<<27) != 0 {
- rval |= AVX512ER
- }
- if ebx&(1<<28) != 0 {
- rval |= AVX512CD
- }
- if ebx&(1<<30) != 0 {
- rval |= AVX512BW
- }
- if ebx&(1<<31) != 0 {
- rval |= AVX512VL
- }
- // ecx
- if ecx&(1<<1) != 0 {
- rval |= AVX512VBMI
- }
- if ecx&(1<<6) != 0 {
- rval |= AVX512VBMI2
- }
- if ecx&(1<<8) != 0 {
- rval |= GFNI
- }
- if ecx&(1<<9) != 0 {
- rval |= VAES
- }
- if ecx&(1<<10) != 0 {
- rval |= VPCLMULQDQ
- }
- if ecx&(1<<11) != 0 {
- rval |= AVX512VNNI
- }
- if ecx&(1<<12) != 0 {
- rval |= AVX512BITALG
- }
- if ecx&(1<<14) != 0 {
- rval |= AVX512VPOPCNTDQ
- }
- // edx
- if edx&(1<<8) != 0 {
- rval |= AVX512VP2INTERSECT
- }
- // cpuid eax 07h,ecx=1
- if eax1&(1<<5) != 0 {
- rval |= AVX512BF16
- }
- }
- }
- }
- if maxExtendedFunction() >= 0x80000001 {
- _, _, c, d := cpuid(0x80000001)
- if (c & (1 << 5)) != 0 {
- rval |= LZCNT
- rval |= POPCNT
- }
- if (d & (1 << 31)) != 0 {
- rval |= AMD3DNOW
- }
- if (d & (1 << 30)) != 0 {
- rval |= AMD3DNOWEXT
- }
- if (d & (1 << 23)) != 0 {
- rval |= MMX
- }
- if (d & (1 << 22)) != 0 {
- rval |= MMXEXT
- }
- if (c & (1 << 6)) != 0 {
- rval |= SSE4A
- }
- if d&(1<<20) != 0 {
- rval |= NX
- }
- if d&(1<<27) != 0 {
- rval |= RDTSCP
- }
- /* Allow for selectively disabling SSE2 functions on AMD processors
- with SSE2 support but not SSE4a. This includes Athlon64, some
- Opteron, and some Sempron processors. MMX, SSE, or 3DNow! are faster
- than SSE2 often enough to utilize this special-case flag.
- AV_CPU_FLAG_SSE2 and AV_CPU_FLAG_SSE2SLOW are both set in this case
- so that SSE2 is used unless explicitly disabled by checking
- AV_CPU_FLAG_SSE2SLOW. */
- if vendorID() != Intel &&
- rval&SSE2 != 0 && (c&0x00000040) == 0 {
- rval |= SSE2SLOW
- }
- /* XOP and FMA4 use the AVX instruction coding scheme, so they can't be
- * used unless the OS has AVX support. */
- if (rval & AVX) != 0 {
- if (c & 0x00000800) != 0 {
- rval |= XOP
- }
- if (c & 0x00010000) != 0 {
- rval |= FMA4
- }
- }
- if vendorID() == Intel {
- family, model := familyModel()
- if family == 6 && (model == 9 || model == 13 || model == 14) {
- /* 6/9 (pentium-m "banias"), 6/13 (pentium-m "dothan"), and
- * 6/14 (core1 "yonah") theoretically support sse2, but it's
- * usually slower than mmx. */
- if (rval & SSE2) != 0 {
- rval |= SSE2SLOW
- }
- if (rval & SSE3) != 0 {
- rval |= SSE3SLOW
- }
- }
- /* The Atom processor has SSSE3 support, which is useful in many cases,
- * but sometimes the SSSE3 version is slower than the SSE2 equivalent
- * on the Atom, but is generally faster on other processors supporting
- * SSSE3. This flag allows for selectively disabling certain SSSE3
- * functions on the Atom. */
- if family == 6 && model == 28 {
- rval |= ATOM
- }
- }
- }
- return Flags(rval)
- }
- func valAsString(values ...uint32) []byte {
- r := make([]byte, 4*len(values))
- for i, v := range values {
- dst := r[i*4:]
- dst[0] = byte(v & 0xff)
- dst[1] = byte((v >> 8) & 0xff)
- dst[2] = byte((v >> 16) & 0xff)
- dst[3] = byte((v >> 24) & 0xff)
- switch {
- case dst[0] == 0:
- return r[:i*4]
- case dst[1] == 0:
- return r[:i*4+1]
- case dst[2] == 0:
- return r[:i*4+2]
- case dst[3] == 0:
- return r[:i*4+3]
- }
- }
- return r
- }
|