123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136 |
- package util
- // A Ring is an element of a circular list, or ring.
- // Rings do not have a beginning or end; a pointer to any ring element
- // serves as reference to the entire ring. Empty rings are represented
- // as nil Ring pointers. The zero value for a Ring is a one-element
- // ring with a nil Value.
- //
- type Ring[T any] struct {
- next, prev *Ring[T]
- Value T // for use by client; untouched by this library
- }
- func (r *Ring[T]) init() *Ring[T] {
- r.next = r
- r.prev = r
- return r
- }
- // Next returns the next ring element. r must not be empty.
- func (r *Ring[T]) Next() *Ring[T] {
- if r.next == nil {
- return r.init()
- }
- return r.next
- }
- // Prev returns the previous ring element. r must not be empty.
- func (r *Ring[T]) Prev() *Ring[T] {
- if r.next == nil {
- return r.init()
- }
- return r.prev
- }
- // Move moves n % r.Len() elements backward (n < 0) or forward (n >= 0)
- // in the ring and returns that ring element. r must not be empty.
- //
- func (r *Ring[T]) Move(n int) *Ring[T] {
- if r.next == nil {
- return r.init()
- }
- switch {
- case n < 0:
- for ; n < 0; n++ {
- r = r.prev
- }
- case n > 0:
- for ; n > 0; n-- {
- r = r.next
- }
- }
- return r
- }
- // New creates a ring of n elements.
- func NewRing[T any](n int) *Ring[T] {
- if n <= 0 {
- return nil
- }
- r := new(Ring[T])
- p := r
- for i := 1; i < n; i++ {
- p.next = &Ring[T]{prev: p}
- p = p.next
- }
- p.next = r
- r.prev = p
- return r
- }
- // Link connects ring r with ring s such that r.Next()
- // becomes s and returns the original value for r.Next().
- // r must not be empty.
- //
- // If r and s point to the same ring, linking
- // them removes the elements between r and s from the ring.
- // The removed elements form a subring and the result is a
- // reference to that subring (if no elements were removed,
- // the result is still the original value for r.Next(),
- // and not nil).
- //
- // If r and s point to different rings, linking
- // them creates a single ring with the elements of s inserted
- // after r. The result points to the element following the
- // last element of s after insertion.
- //
- func (r *Ring[T]) Link(s *Ring[T]) *Ring[T] {
- n := r.Next()
- if s != nil {
- p := s.Prev()
- // Note: Cannot use multiple assignment because
- // evaluation order of LHS is not specified.
- r.next = s
- s.prev = r
- n.prev = p
- p.next = n
- }
- return n
- }
- // Unlink removes n % r.Len() elements from the ring r, starting
- // at r.Next(). If n % r.Len() == 0, r remains unchanged.
- // The result is the removed subring. r must not be empty.
- //
- func (r *Ring[T]) Unlink(n int) *Ring[T] {
- if n <= 0 {
- return nil
- }
- return r.Link(r.Move(n + 1))
- }
- // Len computes the number of elements in ring r.
- // It executes in time proportional to the number of elements.
- //
- func (r *Ring[T]) Len() int {
- n := 0
- if r != nil {
- n = 1
- for p := r.Next(); p != r; p = p.next {
- n++
- }
- }
- return n
- }
- // Do calls function f on each element of the ring, in forward order.
- // The behavior of Do is undefined if f changes *r.
- func (r *Ring[T]) Do(f func(T)) {
- if r != nil {
- f(r.Value)
- for p := r.Next(); p != r; p = p.next {
- f(p.Value)
- }
- }
- }
|